Feuille d'exercices n°4 – Rappels et compléments sur les suites

1) Suites arithmétiques

- a) (u_n) est une suite arithmétique de premier terme $u_0 = 5$ et de raison 10. Calculer u_n pour $1 \le n \le 5$, puis u_n pour n quelconque, la première valeur de n telle que $u_n > 100u_0$, et enfin la somme $u_0 + u_1 + \cdots + u_{10}$.
- b) (v_n) est une suite arithmétique, telle que $v_5 = 17$, et $v_{13} = 28$. Calculer sa raison, son premier terme, ainsi que v_{20} .

2) Suites géométriques

- a) (u_n) est une suite géométrique de premier terme $u_0 = 1000$, et de raison 1,05. Calculer u_n pour $1 \le n \le 5$, puis pour n quelconque, déterminer la première valeur de n pour laquelle $u_n \ge 2u_0$, et enfin la somme $u_0 + u_1 + \cdots + u_{10}$.
- b) (v_n) est une suite géométrique, telle que $v_5 = 12$, et $v_7 = 6$. Calculer sa raison et son premier terme. Y a-t-il un problème ?

3) Suites arithmético-géométriques

- a) Soit (u_n) la suite définie par $u_0 = 5$, et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 3$.
 - i. Montrer que (u_n) est croissante.
 - ii. On pose $v_n = u_n + 3$. Montrer que la suite (v_n) est géométrique.
 - iii. Calculer v_n pour $n \in \mathbb{N}$.
 - iv. En déduire la valeur de u_n en fonction de n.
- b) Soit (v_n) définie par $v_0 = 0,1$, et pour tout $n \in \mathbb{N}$, $v_{n+1} = 11v_n 1$.
 - i. Vérifier que (v_n) est constante.
 - ii. Programmer le calcul des premiers termes de cette suite sur un tableur. Que se passe-t-il ? Expliquer ce phénomène.
- c) On place, à partir de l'an 2000, chaque année 9000€ sur un compte rémunéré à un taux annuel de 6% à intérêts composés.

On note u_n le capital disponible au premier janvier de l'année 2000 + n. Ainsi, $u_0 = 9000$.

- i. Calculer u_1 .
- ii. Montrer que pour tout entier n, $u_{n+1} = 1,06u_n + 9000$.
- iii. Considérons la suite (v_n) définie par $v_n = u_n + 150~000$. Calculer v_0 , et montrer que $v_{n+1} = 1{,}06v_n$. En déduire la nature de la suite (v_n) , et la valeur de v_n , puis celle de u_n en fonction de n.
- iv. À partir de quelle année le capital disponible dépasse-t-il 200 000€?

4) Comparaison de suites

- a) Un algorithme de recherche de plus court chemin explore un réseau de n ville en effectuant n! calculs.
 - i. Que pensez-vous de ses performances? Faites un tableau.
 - ii.