BAC BLANC

Session 2008

ÉPREUVE : MATHÉMATIQUES

Série: Scientifique

enseignement de spécialité (coefficient : 9)

L'usage des calculatrices est autorisé, les documents sont interdits.

Durée de l'épreuve : 4 heures.

Le sujet comporte 5 pages.

Les quatre exercices sont indépendants. Ils peuvent être traités dans n'importe quel ordre, à condition que la présentation soit claire pour le correcteur. Tout résultat donné dans l'énoncé peut être utilisé même s'il n'a pas été démontré pour poursuivre l'exercice. Le soin apporté à la rédaction et à la présentation sera pris en compte dans la note finale.

Exercice 1 (4 points)

Dans l'espace rapporté à un repère orthonormal $(O; \overrightarrow{t}, \overrightarrow{j}, \overrightarrow{k})$, on appelle \mathscr{D} la droite d'équation paramétrique : $\begin{cases} x = 1 + 2t \\ y = 2 - t \\ z = -3 - t \end{cases}$, $t \in \mathbb{R}$, et \mathscr{P} le plan d'équation cartésienne x + 2y - 3z - 1 = 0.

1) Dans chacune des lignes du tableau ci-dessous, une seule affirmation est exacte. le candidat indiquera sur la copie le numéro de la question et la lettre correspondant à l'affirmation choisie. Aucune justification n'est demandée. Une réponse exacte rapporte 0,5 point ; une réponse inexacte enlève 0,25 point ; l'absence de réponse est comptée 0 point. Si le total est négatif, la note est ramenée à 0.

Question	Affirmation A	Affirmation B	Affirmation C
1	Le point M de coordonnées $(-1;3;2)$ appartient à \mathcal{D}	Le point N de coordonnées $(2; -1; -1)$ appartient à \mathcal{D}	Le point R de coordonnées $(3;1;-4)$ appartient à \mathcal{D}
2	Le vecteur \overrightarrow{u} de coordonnées $(1;2;-3)$ est un vecteur directeur de \mathscr{D}	Le vecteur \overrightarrow{v} de coordonnées $(-2;1;1)$ est un vecteur directeur de \mathscr{D}	Le vecteur \overrightarrow{w} de coordonnées $(3; 1; -4)$ est un vecteur directeur de \mathscr{D}
3	\mathscr{D} est incluse dans \mathscr{P}	${\mathcal D}$ est strictement parallèle à ${\mathcal P}$	\mathscr{D} est sécante à \mathscr{P}
4	Le point G de coordonnées $(1;3;-2)$ appartient à \mathcal{P}	Le point G de coordonnées $(1;3;2)$ appartient à $\mathscr P$	Le point G de coordonnées $(1;3;-1)$ appartient à \mathcal{P}
5	Le plan \mathcal{Q}_1 d'équation $x + 2y - 3z + 1 = 0$ est perpendiculaire à \mathscr{P}	Le plan \mathcal{Q}_2 d'équation $4x - 5y - 2z + 3 = 0$ est perpendiculaire à \mathscr{P}	Le plan \mathcal{Q}_3 d'équation $-3x+2y-z-1=0$ est perpendiculaire à \mathscr{P}

- 2) On considère la droite Δ perpendiculaire à $\mathscr P$ passant par $A\left(1;-\frac{1}{2};-\frac{1}{2}\right)$.
 - (a) Écrire une représentation paramétrique de Δ .
 - (b) Étudier l'intersection de \mathscr{D} et Δ .

Exercice 2 (5 points)

Dans cet exercice, toutes les probabilités demandées devront être données sous forme de fractions irréductibles.

Une urne contient 4 boules blanches et 2 boules noires indiscernables au toucher.

- 1) On effectue trois tirages successifs au hasard d'une boule selon la procédure suivante : après chaque tirage, si la boule tirée est blanche, on la remet dans l'urne, et si elle est noire, on ne la remet pas dans l'urne. On désigne par X la variable aléatoire égale au nombre de boules noires obtenues à l'issue des trois tirages. On pourra s'aider d'un arbre pondéré.
 - (a) Quelles sont les valeurs prises par X?
 - (b) Calculer P(X=0).
 - (c) On se propose de déterminer maintenant P(X = 1).
 - Montrer que la probabilité que la seule boule noire tirée soit obtenue au second tirage est égale à $\frac{8}{45}$.
 - En remarquant que la seule boule noire peut être tirée soit au premier, soit au deuxième, soit au troisième tirage, calculer P(X = 1).
- 2) On reprend l'urne dans sa composition initiale : 4 boules blanches et 2 boules noires indiscernables au toucher. Soit n un entier naturel supérieur ou égal à 3.

On effectue maintenant n tirages successifs au hasard d'une boule dans l'urne selon la même procédure : après chaque tirage, si la boule tirée est blanche, on la remet dans l'urne et si elle est noire, on ne la remet pas dans l'urne.

Soit k un entier compris entre 1 et n.

Soit N_k l'événement : « la k-ième boule tirée est noire et toutes les autres sont blanches ». On cherche dans cette question à calculer la probabilité de l'événement N.

Soit A_k l'événement : « on obtient une boule blanche dans chacun des k-1 premiers tirages et une boule noire au k-ième ».

Soit B_k l'événement : « on obtient une boule blanche dans chacun des (n-k) derniers tirages ».

Calculer
$$P(A_k)$$
, $P_{A_k}(B_k)$ et en déduire que $P(N_k) = \left(\frac{2}{3}\right)^{k-1} \times \frac{1}{3} \times \left(\frac{4}{5}\right)^{n-k}$.

- 3) Toujours dans l'hypothèse où l'on effectue n tirages comme dans la question précédente, on s'intéresse à la probabilité de l'événement "X=1", c'est-à-dire la probabilité de tirer exactement une boule noire lors du tirage de n boules selon la règle déjà exposée.
 - (a) En constatant que l'événement X=1 est la réunion disjointe des événements N_1, N_2, \ldots, N_n , calculer sa probabilité P(X=1) (on remarquera que $P(N_k)$ peut s'écrire $\frac{1}{2} \left(\frac{4}{5}\right)^n \left(\frac{5}{6}\right)^k$).
 - (b) Que peut-on dire de la limite de cette probabilité lorsque n tend vers l'infini ? Pouvait-on s'y attendre ?

Exercice 3 (6 points)

Soit
$$f$$
 la fonction de $\mathbb R$ dans $\mathbb R$ définie par :
$$\begin{cases} f(x) = \frac{x}{1 + e^{\frac{1}{x}}} & \text{si } x \neq 0 \\ f(0) = 0 \end{cases}.$$

L'objet de cet exercice est l'étude de quelques propriétés de f et de sa courbe représentative.

1) Une fonction auxiliaire

Soit φ l'application de \mathbb{R}^* dans \mathbb{R} définie par : $\varphi(x) = \left(1 + \frac{1}{x}\right)e^{\frac{1}{x}} + 1$.

- (a) Montrer que φ est dérivable sur \mathbb{R}^* , et calculer $\varphi'(x)$ pour tout $x \neq 0$.
- (b) Calculer les limites de φ en $+\infty$ et $-\infty$.
- (c) Calculer les limites de φ en 0 à gauche et à droite.
- (d) Dresser le tableau de variations de φ .
- (e) En déduire le tableau de signe de φ sur \mathbb{R}^* .

2) Variations de f

(a) Calculer
$$\lim_{\substack{x\to 0\\x<0}} \frac{f(x)-f(0)}{x-0}$$
 et $\lim_{\substack{x\to 0\\x>0}} \frac{f(x)-f(0)}{x-0}$.

f est-elle dérivable en 0 ?

- (b) Montrer que f est continue en 0.
- (c) Déterminer les limites de f en $+\infty$ et $-\infty$.

(d) Montrer que pour tout
$$x \neq 0$$
, $f'(x) = \frac{\varphi(x)}{(e^{1/x} + 1)^2}$.

En déduire que f' est strictement positive sur \mathbb{R}^* , et dresser le tableau de variations de f sur \mathbb{R} (on ne demande pas de détailler les limites de f en $\pm \infty$).

3) Courbe représentative

Construire la courbe représentative de f dans un repère orthonormé, l'unité de longueur étant $6 \,\mathrm{cm}$.

Exercice 4 (5 points)

Pour tout entier naturel non nul n, on pose : $u_n = \frac{1}{3}(10^n - 7)$.

- 1) Démontrer que u_n est un entier naturel.
- 2) (a) Calculer u_1 , u_2 , u_3 et u_4 . Expliquer comment démontrer que u_4 est un nombre premier.
 - (b) Pour tout entier naturel non nul n, on pose : $S_n = 3 + 3 \times 10 + 3 \times 10^2 + \cdots + 3 \times 10^{n-1}$. Démontrer que $u_n = S_n 2$, et en déduire pour $n \ge 2$ l'écriture décimale de u_n .
- 3) (a) Vérifier que u_9 est multiple de 17.
 - (b) Justifier, sans calcul, que $10^{16} \equiv 1 \pmod{17}$.
 - (c) Démontrer que, pour tout entier naturel k, u_{16k+9} est multiple de 17.
- 4) Recherche du pgcd de u_n et u_{n+1} (noté d_n).
 - (a) Démontrer que, pour tout entier naturel non nul n, $u_{n+1} = 10u_n + 21$.
 - (b) Démontrer que d_n divise 21.
 - (c) Démontrer que, pour tout entier naturel non nul n, $u_n \equiv 1 \pmod{3}$.
 - (d) Démontrer que, pour tout entier naturel non nul n, u_n et 7 sont premier entre eux.
 - (e) Déterminer d_n .