Corrigé du devoir surveillé n°4

Exercice 1 : complexes et géométrie

Z est réel si et seulement si¹ $Z = \overline{Z}$. Ceci se traduit par :

$$Z = \overline{Z} \iff \frac{u - \overline{u}z}{1 - z} = \frac{\overline{u} - u\overline{z}}{1 - \overline{z}}$$

$$\iff (u - \overline{u}z) (1 - \overline{z}) = (\overline{u} - u\overline{z}) (1 - z)$$

$$\iff u - u\overline{z} - \overline{u}z + \overline{u} |z|^2 = \overline{u} - \overline{u}z - u\overline{z} + u |z|^2$$

$$\iff (u - \overline{u}) (1 - |z|^2)$$

On a donc deux cas possible, selon la valeur de u:

- si u est réel, $u \overline{u} = 0$, Z est donc réel pour tout $z \neq 1$; d'ailleurs, dans ce cas, on a $Z = \frac{u uz}{1 z} = \frac{u \, (1 z)}{1 z} = u$ pour tout $z \neq 1$;
- si u n'est pas réel, l'équation est équivalente à $1 |z|^2 = 0$, soit $|z|^2 = 1$; Z est donc réel pour tout complexe z affixe du cercle de centre O et de rayon 1, privé du point d'affixe 1 bien-sûr.

Exercice 2 : des équations et des fonctions

- 1) Des exemples
 - (E_1) : $x^2 2x + 1 = 0 \iff (x 1)^2 = 0$ a pour solution (double) x = 1.
 - $(E_{-1}): -x^2 2x + 1 = 0 \iff -(x^2 + 2x 1) = 0 \iff (x+1)^2 2 = 0 \iff (x+1-\sqrt{2})(x+1+\sqrt{2}) \text{ a pour solutions } -1 \pm \sqrt{2}.$
 - $(E_{-3}): -3x^2 2x + 1 = 0 \iff -3\left(x^2 + \frac{2}{3}x \frac{1}{3}\right) = 0 \iff \left(x + \frac{1}{3}\right)^2 \frac{4}{9} = 0 \iff (x + 1)\left(x \frac{1}{3}\right) = 0 \text{ a pour solutions } -1 \text{ et } \frac{1}{3}.$
- 2) Résolution générale
 - (a) Le discriminant de l'équation du second degré (E_{α}) est $\Delta_{\alpha} = 4 4\alpha = 4(1 \alpha)$. Donc :
 - si $\alpha < 1$ (et $\alpha \neq 0$), $\Delta_{\alpha} > 0$ et (E_{α}) a deux racines distinctes,
 - si $\alpha = 1$, $\Delta_{\alpha} = 0$ et (E_{α}) a une racine double,
 - et si $\alpha > 1$, $\Delta_{\alpha} < 0$ et (E_{α}) n'a pas de racines².
 - (b) Puisqu'on tient le discriminant, utilisons-le pour trouver les deux solutions de (E_{α}) (pour $\alpha \leq 1$):

$$x'_{\alpha} = \frac{2 - \sqrt{4(1 - \alpha)}}{2\alpha} = \frac{1 - \sqrt{1 - \alpha}}{\alpha}$$
 et $x''_{\alpha} = \frac{1 + \sqrt{1 - \alpha}}{\alpha}$

¹traduire cette condition par Im(Z) = 0 conduit à des calculs **vraiment** pénibles, il vaut mieux éviter cette méthode!

²réelles, bien entendu, comme demandé par l'énoncé.

(c) Un œil bien entraîné remarque immédiatement que, pour $\alpha \in D =]-\infty; 0[\cup]0;1],$

$$f(\alpha) = \frac{1}{1 + \sqrt{1 - \alpha}} = \frac{1 - \sqrt{1 - \alpha}}{1 - (1 - \alpha)} = \frac{1 - \sqrt{1 - \alpha}}{\alpha} = x'_{\alpha}$$

et par la même technique $g(\alpha) = x''_{\alpha}$.

 $f(\alpha)$ et $g(\alpha)$ sont donc bien, pour $\alpha \in D$, les deux solutions de (E_{α}) .

3) Étude de la fonction f

(a) Les limites de f en $-\infty$ et en 0 s'obtiennent par applications successives des théorèmes sur les limites et les opérations usuelles :

$$\lim_{\alpha \to -\infty} 1 - \alpha = +\infty \\ \lim_{y \to +\infty} \sqrt{y} = +\infty \end{cases} \lim_{\alpha \to -\infty} \sqrt{1 - \alpha} = +\infty$$
 puis $\lim_{\alpha \to -\infty} 1 + \sqrt{1 - \alpha} = +\infty$, et avec $\lim_{y \to +\infty} \frac{1}{y} = 0$, $\lim_{\alpha \to -\infty} \frac{1}{1 + \sqrt{1 - \alpha}} = 0$.

On en déduit l'existence d'une asymptote horizontale, d'équation y=0, à la courbe représentative de la fonction f.

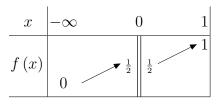
On fait de même³ en 0, pour obtenir $\lim_{\alpha \to 0} f(\alpha) = \frac{1}{2}$. Ainsi, f est prolongeable par continuité⁴ en 0, et sa courbe représentative comporte un "trou" en 0.

(b) $\alpha \mapsto 1 + \sqrt{1 - \alpha}$ est décroissante sur $] - \infty; 1]$, et ne prend que des valeurs positives, donc par composition par $x \mapsto \frac{1}{x}$ qui est décroissante sur \mathbb{R}^{*+} , f est croissante sur $] - \infty; 0[$ et]0; 1[. Si l'on ne voit pas cela, on peut dériver f:

$$f'(x) = -\frac{\frac{-1}{2\sqrt{1-x}}}{(1+\sqrt{1-x})^2}$$

donc f'(x) > 0 pour tout $x \in D$.

Le tableau de variations de f est le suivant :



(c) Voir la fin du devoir pour la courbe.

4) Étude de la fonction g

(a) De la même façon, $\lim_{\alpha \to -\infty} g(\alpha) = 0$, donc la droite horizontale d'équation y = 0 est asymptote à la courbe.

En 0, on doit distinguer deux cas:

•
$$\lim_{\alpha \to 0^-} 1 - \alpha = 1^+$$
, $\operatorname{donc} \lim_{\alpha \to 0^-} 1 - \sqrt{1 - \alpha} = 0^-$, et $\lim_{x \to 0^-} \frac{1}{x} = -\infty$, $\operatorname{donc} \lim_{\alpha \to 0^-} g(\alpha) = -\infty$;

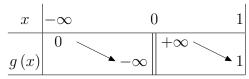
³en constatant qu'il n'y a aucun problème de définition : on a volontairement enlevé 0 de l'ensemble de définition d'une fonction continue sur $]-\infty;1]$

⁴D'ailleurs, on constate sur le problème algébrique que pour $\alpha=0$, l'équation du second degré devient une équation de degré 1 seulement, qui s'écrit -2x+1=0. Son unique solution est $\frac{1}{2}=f\left(0\right)$ (et g n'est pas définie en 0, ce qui tombe bien).

• de la même façon, $\lim_{\alpha \to 0^+} 1 - \sqrt{1 - \alpha} = 0^+$, donc $\lim_{\alpha \to 0^+} g(\alpha) = +\infty$.

La droite verticale d'équation x=0 est donc asymptote à la courbe représentative de g.

(b) Comme précédemment, $\alpha \mapsto 1 - \sqrt{1-\alpha}$ est croissante sur] $-\infty$; 0[, et n'y prend que des valeurs négatives, donc g est décroissante sur cet intervalle. On démontre de même que g est aussi décroissante sur l'intervalle]0; 1[. Le tableau de variations de g est donc :



5) Réciproque

(a) Soit $x \in \mathbb{R}^*$. Notons $\alpha = \varphi(x) = \frac{2x-1}{x^2}$. Remarquons que α s'annule pour $x = \frac{1}{2}$. Si ça n'est pas le cas, on a :

$$\alpha x^{2} - 2x + 1 = \frac{2x - 1}{x^{2}}x^{2} - 2x + 1 = 2x - 1 - 2x + 1 = 0$$

donc x est solution de l'équation (E_{α}) .

(b) φ est une fonction rationnelle, elle est donc dérivable sur son ensemble de définition, et :

$$\varphi'(x) = \frac{2x^2 - 2x(2x - 1)}{x^4} = \frac{2(1 - x)}{x^3}$$

De plus, en appliquant le théorème sur les limites en l'infini d'une fonction rationnelle :

$$\lim_{x\to\pm\infty}\varphi\left(x\right)=\lim_{x\to\pm\infty}\frac{2x-1}{x^2}=\lim_{x\to\pm\infty}\frac{2x}{x^2}=\lim_{x\to\pm\infty}\frac{2}{x}=0$$

donc l'axe des abscisses est asymptote horizontale à la courbe de φ .

Enfin, $\lim_{x\to 0} 2x - 1 = -1$, et $\lim_{x\to 0} x^2 = 0^+$, donc $\lim_{x\to 0} \varphi(x) = -\infty$. L'axe des ordonnées est donc aussi asymptote, verticale cette fois-ci, à la courbe de φ .

le tableau de variations de φ est donc :

x	$\left -\infty\right $)	1	$+\infty$
$\overline{\varphi'(x)}$	_	+	0 -	
$\varphi\left(x\right)$	0	$-\infty$	1	0

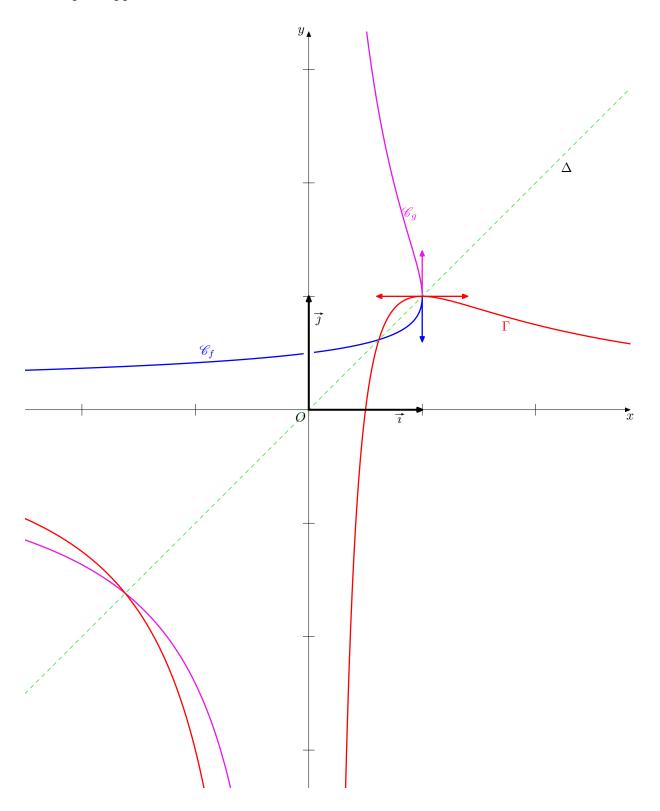
(c) On trouvera à la page suivante les courbes représentatives des trois fonctions étudiées. On constate que la courbe Γ semble être la symétrique de la réunion de \mathscr{C}_f et \mathscr{C}_g , que nous noterons \mathscr{C} , par rapport à la première diagonale Δ .

Ceci s'explique de la façon suivante : un point M(x, y) appartient à \mathscr{C} si et seulement si $x \in \mathbb{R}^*$, et y = f(x) ou y = g(x), i.e. y est solution de l'équation (E_x) .

Mais on a, pour tout $x \in \mathbb{R}^*$, $0 < f(x) \le 1$, alors que $g(x) \in]-\infty; 0[\cup [1; +\infty[$. Tout $y \in \mathbb{R}^*$ est donc soit un f(x), soit un g(x), mais il ne peut être les deux à la fois.

Ceci signifie que se donner une racine quelconque identifie immédiatement l'équation (E_{α}) dont elle est solution.

Or, M'(x';y') est un point de Γ si et seulement si x est solution de l'équation (E_y) . Ainsi, $M'(x';y') \in \Gamma \iff M(y;x) \in \mathscr{C}$, et les deux courbes sont bien symétriques par rapport à Δ .



Exercice 3 : une équation dans $\mathbb C$

Aux deux équations x+y+z=1 (1) et xyz=1 (2), il convient d'ajouter la traduction de l'hypothèse supplémentaire : on cherche des nombres de module 1, soit : $x\overline{x}=y\overline{y}=z\overline{z}=1$.

1) En conjuguant (1), on obtient $\overline{x} + \overline{y} + \overline{z} = 1$. Et de $x\overline{x} = 1$, on tire $\overline{x} = \frac{1}{x}$, et de même $\overline{y} = \frac{1}{y}$ et $\overline{z} = \frac{1}{z}$. On a donc bien $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$.

En multipliant alors par xyz, égal à 1 d'après (2), on obtient : xy + xz + yz = 1 (3).

2) Le triplet (x, y, z) est donc solution du système $\begin{cases} x + y + z = 1 \\ xy + xz + yz = 1 \\ xyz = 1 \end{cases}$.

Ainsi, y+z=1-x, et $yz=\frac{1}{x}$. En reportant ceci dans (3), écrit sous la forme x(y+z)+yz=1, on obtient : $x(1-x)+\frac{1}{x}=1$.

Reste à multiplier par x, développer et simplifier pour en déduire que x vérifie nécessairement : $x^3 - x^2 + x - 1 = 0$ (4).

Constater que 1 est solution de cette équation permet de prédire la factorisation par x-1, ce qu'on peut voir directement :

$$x^{3} - x^{2} + x - 1 = x^{2}(x - 1) + x - 1 = (x - 1)(x^{2} + 1) = (x - 1)(x - i)(x + i)$$

Les trois racines de cette équation (4) sont donc⁵ 1, i et -i.

3) De la solution x = 1, on déduit y + z = 0 et yz = 1. y et z sont donc les solutions de l'équation $X^2 - 0X + 1 = 0$. On en déduit y = i et z = -i, ou y = -i et z = i, et donc deux triplets de solutions : (1, i, -i) et (1, -i, i).

Pour trouver les autres solutions, on pourrait résoudre les équations correspondant à $x=\pm i$, mais il est plus simple de constater que le problème est entièrement symétrique en x, y et z. Les autres triplets s'obtiennent donc en faisant "tourner" les triplets déjà obtenus. D'où les 6 solutions :

$$\{(1, i, -i); (1, -i, i); (i, 1, -i); (i, -i, 1); (-i, 1, i); (-i, i, 1)\}$$

Exercice 4: Probabilités

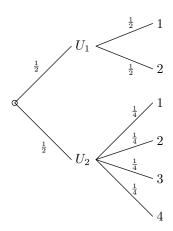
Une urne U_1 contient deux jetons numérotés 1 et 2. Une urne U_2 contient 4 jetons numérotés 1, 2, 3 et 4.

1) (a) La réponse à cette question s'appuie sur l'arbre suivant :

$$(X-x)(X-y)(X-z) = X^3 - (x+y+z)X^2 + (xy+xz+yz)X - xyz$$

Ainsi, x, y et z sont les solutions de l'équation $X^3 - X^2 + X - 1 = 0$, que nous avons obtenue par des méthodes plus... laborieuses.

⁵Les plus aguerris seront intéressés par une méthode plus générale de résolution de ce système : en développant (X-x)(X-y)(X-z), on obtient :



On a donc, avec des notations évidentes :

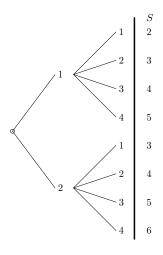
$$P(A) = P(U_1 \cap A) + P(U_2 \cap A) = P(U_1) P_{U_1}(A) + P(U_2) P_{U_2}(A) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{4} = \frac{3}{8}$$

(b) On cherche $P_A(U_1)$, qui d'après le cours est égal à :

$$P_A(U_1) = \frac{P(A \cap U_1)}{P(A)} = \frac{\frac{1}{4}}{\frac{3}{8}} = \frac{2}{3}$$

Ainsi, si un jeton numéroté 1 est tiré, il a deux fois plus de chance de provenir de l'urne U_1 que de l'urne U_2 .

2) Jusqu'à la fin de l'exercice, on exploite l'arbre suivant :



Les branches issues de chaque noeud étant équiprobables, on n'a pas indiqué les probabilités, elles valent bien-sûr $\frac{1}{2}$ au premier étage, et $\frac{1}{4}$ au deuxième.

- (a) L'urne U_2 ne sait pas ce qu'a donné l'urne U_1 , ceci peut justifier l'indépendance des deux variables aléatoires. Sinon, il faut utiliser l'arbre pour calculer la probabilité de chaque événement $(X_1 = i, X_2 = j)$, et vérifier que la probabilité d'un tel événement est $P(X_1 = i) \times P(X_2 = j)$, quels que soient i et j. On ne rentrera pas plus dans les détails.
- (b) L'événement "tirer deux jetons identiques" est la réunion (disjointe) des événements "tirer deux jetons 1" et "tirer deux jetons 2", sa probabilité est donc $\frac{1}{2} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{4} = \frac{1}{4}$.
- (c) Les valeurs de la variable S sont indiquées dans l'arbre. La loi de S en résulte :

S	2	3	4	5	6
P	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{2}{8}$	$\frac{2}{8}$	$\frac{1}{8}$

(d) La loi de Z se déduit de celle de S :

Z	-10	α
P	<u>5</u> 8	$\frac{3}{8}$

L'espérance de
$$Z$$
 est donc : $E\left(Z\right)=-10\times\frac{5}{8}+\alpha\times\frac{3}{8}=\frac{3\alpha-50}{8}.$

Le jeu est équitable si l'espérance est nulle, soit si $3\alpha - 50 = 0$, soit encore⁶ $\alpha = \frac{50}{3}$.

 $^{^6}$ On pourra s'étonner que les joueurs aient décidé d'une valeur de α difficile à concrétiser avec les pièces de monnaie couramment en usage, mais je me refuse à traduire "supérieur à 4" en "supérieur strictement à 4". Si on veut quand même faire ainsi, on trouve comme valeur $\alpha=6$, ce qui semble plus raisonnable, mais zut.