Interrogation n°3: fonction exponentielle

Cours (5 points)

On sait que exp est l'unique fonction dérivable sur \mathbb{R} solution de l'équation différentielle y'=y, vérifiant y(0)=1.

- 1) Montrer que pour tout $x \in \mathbb{R}$, $\exp(-x) = \frac{1}{\exp(x)}$ (étudier la fonction f définie par $f(x) = \exp(x) \exp(-x)$).
- 2) Montrer que pour tous x et y réels, $\exp(x+y) = \exp(x) \exp(y)$ (étudier la fonction g définie $par\ g(x) = \exp(x+y) \exp(-x)$).

En déduire que pour tout $x \in \mathbb{R}$, $(\exp(x))^2 = \exp(2x)$.

3) Application : résoudre l'équation $e^{2x} + e^x - 2 = 0$.

Vrai-Faux (5 points)

Indiquer si les phrases suivantes sont vraies ou fausses, et justifier votre réponse.

- 1) La droite d'équation y = 1 x est tangente à la courbe représentative de la fonction exp.
- 2) La fonction $g: x \mapsto \frac{e^x 1}{e^x + 1}$ est impaire.
- 3) Pour tout réel $a, e^a = \sqrt{e^{2a}}$.
- 4) Si u est une fonction positive et strictement croissante sur \mathbb{R} , alors la fonction $f: x \mapsto u(x) e^x$ est strictement croissante sur \mathbb{R} .

Exercice (12 points)

1) Exercice 1 (5 points)

Résoudre les équations et inéquations suivantes :

(a)
$$e^x + e^{-x} = 0$$

(c)
$$e^{x^2-4} = (e^{x+2})^2$$

(b)
$$e^{4x-1} = \frac{1}{e}$$

(d)
$$e^{2x} + 3e^x - 4 > 0$$
 (poser $X = e^x$).

2) Exercice 2 (5 points)

On considère la fonction f définie par $f(x) = \frac{e^x}{e^x - x}$.

- (a) Étudier la fonction $g: x \mapsto e^x x$. En déduire que l'ensemble de définition de f est \mathbb{R} .
- (b) Trouver les limites de f en $+\infty$ et $-\infty$. En donner une interprétation graphique.
- (c) Calculer f', et étudier les variations de f.
- (d) Construire la courbe représentative de f, ainsi que tous les éléments étudiés.

Interrogation $n^{\circ}3$: fonction exponentielle

Cours (5 points)

On sait que exp est l'unique fonction dérivable sur \mathbb{R} solution de l'équation différentielle y'=y, vérifiant y(0)=1.

- 1) Montrer que pour tout $x \in \mathbb{R}$, $\exp(-x) = \frac{1}{\exp(x)}$ (étudier la fonction f définie par $f(x) = \exp(x) \exp(-x)$).
- 2) Montrer que pour tous x et y réels, $\exp(x+y) = \exp(x) \exp(y)$ (étudier la fonction g définie $par\ g(x) = \exp(x+y) \exp(-x)$). En déduire que pour tout $x \in \mathbb{R}$, $(\exp(x))^2 = \exp(2x)$.

3) Application : résoudre l'équation $e^{2x} + e^x - 2 = 0$.

Vrai-Faux (5 points)

Indiquer si les phrases suivantes sont vraies ou fausses, et justifier votre réponse.

- 1) La droite d'équation y = 1 x est tangente à la courbe représentative de la fonction exp.
- 2) La fonction $g: x \mapsto \frac{e^x 1}{e^x + 1}$ est impaire.
- 3) Pour tout réel a, $e^a = \sqrt{e^{2a}}$.
- 4) Si u est une fonction positive et strictement croissante sur \mathbb{R} , alors la fonction $f: x \mapsto u(x) e^x$ est strictement croissante sur \mathbb{R} .

Exercice (12 points)

1) Exercice 1 (5 points)

Résoudre les équations et inéquations suivantes :

(a)
$$e^x + e^{-x} = 0$$

(c)
$$e^{x^2-4} = (e^{x+2})^2$$

(b)
$$e^{4x-1} = \frac{1}{e}$$

(d)
$$e^{2x} + 3e^x - 4 > 0$$
 (poser $X = e^x$).

2) Exercice 2 (5 points)

On considère la fonction f définie par $f(x) = \frac{e^x}{e^x - x}$.

- (a) Étudier la fonction $g: x \mapsto e^x x$. En déduire que l'ensemble de définition de f est \mathbb{R} .
- (b) Trouver les limites de f en $+\infty$ et $-\infty$. En donner une interprétation graphique.
- (c) Calculer f', et étudier les variations de f.
- (d) Construire la courbe représentative de f, ainsi que tous les éléments étudiés.