Corrigé du devoir surveillé n°3

I Partie A R.O.C.

- 1) Si M est un point quelconque de P, le triangle MA'A est rectangle en A', donc la distance AM est supérieure à la distance AA'. Ainsi, la plus courte distance de A à un point de P est AA'.
- 2) $\overrightarrow{AA'}$ et \overrightarrow{n} sont colinéaires, donc $\left|\overrightarrow{A'A}.\overrightarrow{n}\right| = \left\|\overrightarrow{AA'}\right\|.\|\overrightarrow{n}\|.$ Ainsi :

$$|ax_A + by_A + cz_A - a\alpha - b\beta - c\gamma| = d(A, P)\sqrt{a^2 + b^2 + c^2}$$

3) A' est un point de P, donc ses coordonnées vérifient $a\alpha + b\beta + c\gamma + d = 0$. Ainsi :

$$d(A, P) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Partie B Application

1) Le rayon R de la sphère S est égal à la distance de Ω à Q, soit :

$$R = d(\Omega, Q) = \frac{|1 - (-1) + 3 - 11|}{\sqrt{1^2 + (-1)^2 + 1^2}} = \frac{6}{\sqrt{3}}$$

L'équation de la sphère est donc : $(x-1)^2 + (y+1)^2 + (z-3)^2 = 12$.

2) Une façon de procéder consiste à voir le point de contact K cherché comme le projeté orthogonal de Ω sur Q. En reprenant le raisonnement ci-dessus, on a donc :

$$\overrightarrow{\Omega K}=k\,\overrightarrow{n},\,\mathrm{avec}\,\,k\in\mathbb{R}\,\,\mathrm{et}\,\,\overrightarrow{n}\,\left(1;-1;1\right),\,\mathrm{et}\,\,d\left(\Omega,Q\right)=\left\|\overrightarrow{\Omega K}\right\|$$

On en déduit : $\left\|\overrightarrow{\Omega K}\right\|^2 = k^2 \left\|\overrightarrow{n}\right\|^2 = d\left(\Omega,Q\right)^2$, d'où $3k^2 = 12$, et $k = \pm 2$.

Notons $k=2\varepsilon$, avec $\varepsilon=\pm 1$. De $\overrightarrow{\Omega K}=k\overrightarrow{n}$, on déduit les coordonnées de $K:(1+2\varepsilon;-1-2\varepsilon;3+2\varepsilon)$. On termine en disant que $K\in Q$, soit :

$$(1+2\varepsilon)-(-1-2\varepsilon)+(3+2\varepsilon)-11=0 \iff -6+6\varepsilon=0 \iff \varepsilon=1$$

Ainsi, les coordonnées de K sont (3; -3; 5).

II (a) Le plan médiateur Π_{AC} de [AC] est l'ensemble des points équidistants de A et C, son équation est donné par :

$$MA^2 = MC^2 \iff (x-1)^2 + y^2 + z^2 = x^2 + (y-1)^2 + z^2 \iff y = \frac{1}{2}$$

On trouve de la même façon l'équation du plan médiateur Π_{BC} de [BC]: $x = \frac{1}{2}$. Enfin, l'équation du plan médiateur Π_{AD} de [AD] est donné par :

$$MA^2 = MD^2 \iff (x-1)^2 + y^2 + z^2 = x^2 + y^2 + (z-\alpha)^2 \iff 2x - 2\alpha z = 1 - \alpha^2$$

(b) Le centre de la sphère S_{α} est le point commun aux trois plans médiateurs Π_{AC} , Π_{BC} et Π_{AD} . Ses coordonnées sont solution du système :

$$\left\{\begin{array}{l} x = \frac{1}{2} \\ y = \frac{1}{2} \\ 2x - 2\alpha z = 1 - \alpha^2 \end{array}\right. \iff \left\{\begin{array}{l} x = \frac{1}{2} \\ y = \frac{1}{2} \\ z = \frac{\alpha}{2} \end{array}\right.$$

Les coordonnées de Ω sont donc $(\frac{1}{2}; \frac{1}{2}; \frac{\alpha}{2})$.

(c) Le rayon de la sphère S_{α} est ΩA , soit :

$$r_{\alpha} = \Omega A = \sqrt{\left(\frac{1}{2}\right)^{+} \left(-\frac{1}{2}\right)^{2} + \left(-\frac{\alpha}{2}\right)^{2}} = \frac{\sqrt{\alpha^{2} + 2}}{2}$$

La valeur minimale de ce rayon est obtenu lorsque $\alpha = 0$, elle vaut alors $\frac{1}{\sqrt{2}}$. Bien entendu, ce rayon minimal ne peut être obtenu, les quatre points A, B, C et D étant dans ce cas coplanaires.

III 1°) f est dérivable sur \mathbb{R} , et $f'(x) = 3x^2 - 9 = 3\left(x - \sqrt{3}\right)\left(x + \sqrt{3}\right)$. On a :

$$\lim_{x \to -\infty} f(x) = -\infty \quad \lim_{x \to +\infty} f(x) = +\infty \quad f\left(-\sqrt{3}\right) = 6\sqrt{3} - 12 \quad \text{et} \quad f\left(\sqrt{3}\right) = -6\sqrt{3} - 12$$

Le tableau de variations de f est donc :

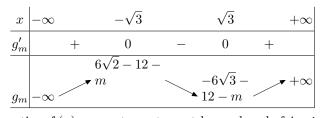
x	$\left -\infty\right $		$-\sqrt{3}$		$\sqrt{3}$	$+\infty$
f'		+	0	_	0	+
$f = 6\sqrt{2} - 12 + \infty$						

Or $f\left(-\sqrt{3}\right) < 0$, f ne s'annule donc pas sur $]-\infty;\sqrt{3}]$. f est continue (car dérivable) strictement croissante sur $[\sqrt{3};+\infty[$, donc réalise une bijection strictement croissante de $[\sqrt{3};+\infty[$ sur $[6\sqrt{3}-12;+\infty[$.

Comme l'ensemble d'arrivée contient 0, il existe un unique réel $\alpha \in [\sqrt{3}; +\infty[$ tel que $f(\alpha) = 0$.

On a f(3) < 0, f(4) > 0, donc $3 < \alpha < 4$, puis f(3,5) < 0, f(3,6) > 0 donc $3,5 < \alpha < 3,6$, et enfin f(3,52) < 0, f(3,53) > 0 donc $3,52 < \alpha < 3,53$.

 2°) Notons $g_m(x) = f(x) - m$. Le tableau de variations de g_m se déduit facilement de celui de f:



Le nombre de solutions de l'équation f(x) = m est exactement le nombre de fois où $g_m(x)$ s'annule. Ainsi :

- si $m < -6\sqrt{3} 12$, il y a une seule solution dans l'intervalle $] \infty; -\sqrt{3}[$;
- si $m = -6\sqrt{3} 12$, il y a deux solutions, l'une dans l'intervalle] $-\infty$; $-\sqrt{3}$ [, l'autre égale à $\sqrt{3}$;
- si $-6\sqrt{3} 12 < m < 6\sqrt{3} 12$, il y a trois solutions, l'une dans chacun des intervalles $] \infty; -\sqrt{3}[$, $] \sqrt{3}; \sqrt{3}[$ et $]\sqrt{3}; +\infty[$;
- si $m = 6\sqrt{3} 12$, il y a deux solutions, l'une dans l'intervalle $]\sqrt{3}; +\infty[$, l'autre égale à $-\sqrt{3};$
- si $m > 6\sqrt{3} 12$, il y a une seule solution, dans l'intervalle $]\sqrt{3}; +\infty[$.

IV 1°) f_0 est dérivable sur [0;2[, et $f_0'(x)=2x(2-x)-x^2=x(4-3x)$. Le tableau de variations de f_0 est donc :

De f(x+2) = f(x) pour tout $x \in \mathbb{R}$, on déduit que f est 2-périodique, donc le graphe de f sur [2n; 2n+2[se déduit de celui sur [0; 2[par une translation de vecteur $2n\vec{i}$.

 2°) Si $x \in [2n, 2n+2]$, alors $x-2n \in [0; 2]$, donc, d'après la périodicité de f,

$$f(x) = f(x - 2n) = (x - 2n)^{2} (2 - (x - 2n)) = (x - 2n)^{2} (2n + 2 - x)$$

3°) f est continue sur]0; 2[. En 0, la limite à droite est celle de f_0 , alors que la limite à gauche est égale à la limite à gauche de f_0 en 2, i.e. à 0. Ainsi, f est continue en 0, et par périodicité, en tout point de \mathbb{R} .

Par contre, on constate que, si f est continue en tout point de \mathbb{R} différent de 2n, avec $n \in \mathbb{Z}$, les points d'abscisses 2n sont des points anguleux. En effet :

$$\frac{f\left(x\right) - f\left(0\right)}{x} = \begin{cases} x\left(2 - x\right) \xrightarrow[x \to 0^{+}]{} 0 & \text{si } x > 0\\ -\left(x + 2\right)^{2} \xrightarrow[x \to 0^{-}]{} -4 & \text{si } x < 0 \end{cases}$$

Voici pour finir la courbe représentative de f:

