Intégrales impropres

I. Intégrabilité, convergence

1) Pour bien comprendre le cours

Soit f continue par morceaux sur l'intervalle $[a, +\infty[$, à valeurs dans \mathbb{R}^+ . Préciser les liens (implication, équivalence) entre les assertions suivantes :

- 1) f est intégrable sur $[a, +\infty[$;
- 2) $\lim_{x \to +\infty} f(x) = 0$.

Qu'en est-il si l'on suppose de plus f décroissante sur $[a, \infty[$?

2) Fréciser la nature des intégrales suivantes, en discutant en fonction des éventuels paramètres :

(a)
$$\int_{-t^{3/2}}^{+\infty} \frac{\ln(1+t)}{t^{3/2}} dt$$

(a)
$$\int_{0}^{+\infty} \frac{\ln{(1+t)}}{t^{3/2}} dt$$
 (c) $\int_{0}^{+\infty} \frac{(t+1)^{\alpha} - t^{\alpha}}{t^{\beta}} dt$ (e) $\int_{0}^{+\infty} \frac{t - \sin{t}}{t^{\alpha}} dt$ (g) $\int_{0}^{+\infty} \cos{(\ln{x})} dx$

(e)
$$\int_0^{+\infty} \frac{t - \sin t}{t^{\alpha}} dt$$

(g)
$$\int_0^{+\infty} \cos(\ln x) \, dx$$

(b)
$$\int_1^{+\infty} \frac{t^a \, \mathrm{d}t}{\left(1-t\right)^b}$$

(d)
$$\int_0^{+\infty} \sin\left(\frac{1}{t^2}\right) dt$$

(b)
$$\int_{1}^{+\infty} \frac{t^a dt}{(1-t)^b}$$
 (d) $\int_{0}^{+\infty} \sin\left(\frac{1}{t^2}\right) dt$ (f) $\int_{0}^{+\infty} \frac{dt}{\sqrt{\left|\sin t\right|(1+e^t)}}$ (h) $\int_{e}^{+\infty} \frac{dt}{t \ln t \ln(\ln t)}$

(h)
$$\int_{e}^{+\infty} \frac{\mathrm{d}t}{t \ln t \ln (\ln t)}$$

3) Montrer que $t\mapsto \frac{\sin t}{t}$ n'est pas intégrable sur \mathbb{R} , mais que par contre l'intégrale $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge.

4) ★★ Intégrales de Bertrand

Pour α et β réels, on étudie la nature de l'intégrale $\int_{-t}^{+\infty} \frac{dt}{t^{\alpha} (\ln t)^{\beta}}$.

- (a) Traiter les cas $\alpha \neq 1$, par comparaison à une intégrale de Riemann bien choisie.
- (b) On suppose ici $\alpha = 1$. Calculer $\int_{e}^{x} \frac{dt}{t(\ln t)^{\beta}}$, et en déduire les valeurs de β pour lesquelles l'intégrale
- 5) $\mathbb{C}^{\mathbb{F}}$ Soit $f: \mathbb{R}^+ \to \mathbb{R}^{*+}$ continue, décroissante.
 - (a) Montrer que $t\mapsto f\left(t\right)\sin t$ est intégrable sur $[0,+\infty[$ si et seulement si f est intégrable sur $[0,+\infty[$.
 - (b) Montrer que $\int_{0}^{+\infty} f(t) \sin t \, dt$ converge si et seulement si $\lim_{t \to +\infty} f(t) = 0$.

6) 🎏 Des intégrales un peu folle

(a) Pour
$$\lambda > 0$$
, calculer $\int_0^{\pi} \frac{\mathrm{d}x}{1 + \lambda^2 \sin^2 x}$.

(b) En déduire la nature de l'intégrale $\int_{0}^{+\infty} \frac{f(t)}{1+a(t)\sin^{2}t} dt$, dans les deux cas suivants :

i.
$$f(t) = t^{\alpha}$$
, $g(t) = t^{\beta}$,

ii.
$$f(t) = e^{\alpha t}$$
, $g(t) = e^{\beta t}$.

7) Deux énoncés qui se ressemblent

- (a) Soit $f:[1,+\infty[\to\mathbb{C} \text{ continue. Montrer que si l'intégrale } \int_{1}^{+\infty} f(t) dt$ converge, il en est de même de l'intégrale $\int_{t}^{+\infty} \frac{f(t)}{t^{\alpha}} dt$ pour tout $\alpha > 0$.
- (b) Soit $f: \mathbb{R} \to \mathbb{R}$ continue, périodique de période T>0. On note $m=\frac{1}{T}\int_0^T f(t) \, \mathrm{d}t$. Montrer que $\int_{-t}^{+\infty} \frac{f(t)}{t} dt \text{ converge si et seulement si } m = 0.$

8) Sommes de Riemann

(a) Soit $f:]0,1] \to \mathbb{R}$ décroissante et intégrable sur]0,1]. Montrer que $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f\left(t\right) \, \mathrm{d}t$.

En déduire
$$\lim_{n \to \infty} \left(\frac{n!}{n^n}\right)^{1/n}$$
, $\lim_{n \to \infty} \left(\prod_{k=0}^n \binom{n}{k}\right)^{1/n}$ et $\lim_{n \to \infty} \left(\prod_{k=1}^{n-1} \sin \frac{k\pi}{n}\right)^{1/n}$.

(b) Soit f continue, positive, décroissante sur \mathbb{R}^+ , telle que $\int_0^{+\infty} f(t) dt$ converge. Montrer que

$$\lim_{h \to 0^{+}} \left(\sum_{n=0}^{\infty} h f(nh) \right) = \int_{0}^{+\infty} f(t) dt$$

II. CALCULS D'INTÉGRALES IMPROPRES

1) 🕼 Convergence et calcul des intégrales suivantes, en utilisant éventuellement le changement de variable fourni :

(a)
$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{t^2 + pt + q}$$

(d)
$$\int_0^1 \frac{\ln t}{\sqrt{1-t}} dt$$
 $(u = \sqrt{1-t})$

(b)
$$\int_{0}^{2\pi} \frac{dx}{2 + \cos x}$$
 $(u = \tan \frac{x}{2})$

(e)
$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{\sin t}$$
 $(u = e^t)$

(c)
$$\int_0^{+\infty} \frac{(1+x)^{1/3}-1}{x(1+x)^{2/3}} dx$$
 $(u=(1+x)^{1/3})$

(f)
$$\int_0^{+\infty} \frac{t \ln t}{(t^2 + 1)^2} dt$$
 $(u = \frac{1}{t} \text{ sur }]0, 1[)$

- 2) In Montrer que la fonction $\varphi: x \mapsto \operatorname{Arc} \tan(x) \operatorname{Arc} \tan(x-1)$ est intégrable sur \mathbb{R} , et que $\int_{-\infty}^{+\infty} \varphi = \pi$. Proposer une généralisation de ce résultat.
- 3) Étudier la convergence de l'intégrale $I\left(\alpha\right)=\int_{0}^{1}\left(\frac{1}{t}-\left|\frac{1}{t}\right|\right)t^{\alpha}\,\mathrm{d}t.$ Calculer $I\left(0\right).$
- 4) (a) Calculer $J = \int_0^{+\infty} \frac{t \, dt}{1 + t^4}$ (on pourra poser $u = t^2$).
 - (b) Établir que $I = \int_0^{+\infty} \frac{\mathrm{d}t}{1+t^4} = \int_0^{+\infty} \frac{t^2 \, \mathrm{d}t}{1+t^4}$. En déduire la valeur de I (Indication : factoriser $1+t^4$).
- 5) ★ [Un grand classique, et deux autres qui lui ressemblent
 - (a) i. Justifier l'existence de $I=\int_0^{+\infty} \frac{\sin^3 t}{t^2} \, \mathrm{d}t.$
 - ii. Pour x > 0, montrer que $I(x) = \int_{x}^{+\infty} \frac{\sin^3 t}{t^2} dt = \frac{3}{4} \int_{x}^{3x} \frac{\sin t}{t^2} dt$. En déduire la valeur de I.
 - (b) i. Justifier l'existence de $I = \int_0^1 \frac{t-1}{\ln t} dt$.
 - ii. Montrer que $I = \int_0^{+\infty} \frac{e^{-x} e^{-2x}}{x} dx = \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^{2\varepsilon} \frac{e^{-x}}{x} dx$, et en déduire la valeur de I.
 - (c) Utiliser un procédé similaire pour calculer $\int_0^{+\infty} \frac{\operatorname{Arc} \tan 2x \operatorname{Arc} \tan x}{x} \, \mathrm{d}x$
- 6) [Calcul de $\int_0^{+\infty} \frac{\sin t}{t} dt$
 - (a) À l'aide d'une intégration par parties, montrer que $\int_0^{+\infty} \frac{\sin t}{t} dt = \int_0^{+\infty} \frac{\sin^2 t}{t^2} dt$.
 - (b) Montrer que $I_n = \int_0^{\pi/2} \frac{\sin^2 nt}{t^2} dt$ est comprise entre $A_n = \int_0^{\pi/2} \frac{\sin^2 nt}{\sin^2 t} dt$ et $B_n = \int_0^{\pi/2} \cot^2 t \sin^2 nt dt$.
 - (c) Calculer $A_n + A_{n+2} 2A_{n+1}$ et $A_n B_n$. En déduire les valeurs de A_n et B_n en fonction de n.
 - (d) Montrer que $\lim_{n\to\infty}\frac{I_n}{n}=\int_0^{+\infty}\frac{\sin^2 t}{t^2}\,\mathrm{d}t$, en déduire la valeur de cette intégrale.